

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 1 of 49

Work Package 2: Workflow

Capturing Pharmacometrics
Workflow Concepts

Related task of the project (Task # and full name): D6.17

Author: Jonathan Chard

Approved by: Justin Wilkins

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 2 of 49

1. Definitions

1. Acronyms and Abbreviations

Term Definition

PROV-O A standard developed by the W3C for capturing information
about provenance, encapsulating entities, activities and
agents involved in the creation of digital artefacts

For more information see the official documentation at
https://www.w3.org/TR/2013/REC-prov-o-20130430/

PROV-N A human readable implementation of the PROV-O standard,
which defines statements that should be used to capture
provenance information

Thoughtflow A term coined within DDMoRe to define the combination of
workflow and the rationale behind the decisions taken during
a modelling project

https://www.w3.org/TR/2013/REC-prov-o-20130430/

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 3 of 49

Contents
1. Definitions .. 2

1. Acronyms and Abbreviations ... 2

1 Introduction ... 6

1.1 Purpose .. 6

1.2 Audience ... 6

1.3 Scope .. 6

2 PROV-O Terms .. 7

2.1 Entity ... 7

2.2 Activity .. 7

2.3 Agent .. 8

2.4 Relationships .. 8

2.4.1 Activity - Entity relationships ... 8

2.4.2 Entity - Entity relationships ... 10

2.4.3 Activity - Activity relationships .. 12

2.4.4 Entities - Agent relationships .. 12

2.4.5 Activity – agent relationships .. 13

2.4.6 Object - object relationships ... 13

3 Pharmacometrics Workflow Concepts... 14

3.1 Entities .. 14

3.1.1 Typical project entities .. 14

3.1.2 Assumptions .. 15

3.1.3 Decisions ... 16

3.2 Relationships between entities .. 16

3.3 Activities .. 17

3.4 Agents ... 18

4 Mappings onto Provenance Concepts .. 19

4.1 Conventions .. 19

4.1.1 Naming conventions ... 19

4.1.2 Entity creation .. 19

4.2 Entity capture .. 19

4.2.1 Usage of existing attributes .. 20

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 4 of 49

4.2.2 Entity Types ... 20

4.2.3 Entity Attributes .. 21

4.2.4 Assumptions .. 22

4.3 Entity Relationships ... 23

4.3.1 Incorporating Activities into a relationship .. 24

4.3.2 Describing Entities ... 24

4.3.3 Relationship Metadata ... 25

4.4 Activities .. 25

4.4.1 Activity capture ... 26

4.5 Agents ... 28

4.5.1 Person Agents ... 28

4.5.2 Software Agents ... 28

4.5.3 Environment Agents ... 28

4.6 Modelling Steps... 29

5 User actions to capture ... 30

5.1 Principles .. 30

5.2 Scenarios .. 30

5.2.1 A “message” is sent to the Thoughtflow server 30

5.2.2 Create child model ... 32

5.2.3 Weak links between models ... 32

5.2.4 Updating a file .. 33

5.2.5 Moving a file ... 33

5.2.6 Adding metadata to an Entity ... 34

5.2.7 Updating the description of an Entity .. 35

5.2.8 QC Status .. 37

5.2.9 Making an Assumption/Decision .. 38

5.2.10 Updating Entities revisited .. 38

5.2.11 Template models.. 39

6 Querying the Workflow Store .. 41

6.1 Storing information in the Workflow store .. 41

6.2 Obtaining the model development tree .. 41

6.3 Getting Entities .. 41

6.4 Getting Activities ... 41

7 Solution Design ... 43

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 5 of 49

7.1 Provenance Concepts ... 43

7.1.1 Identifiers ... 43

7.1.2 Entity IDs ... 43

7.1.3 Activity IDs ... 44

7.1.4 Bundles .. 44

7.2 Components .. 44

7.2.1 Version Control System.. 44

7.2.2 Provenance Infrastructure .. 45

7.2.3 Thoughtflow Repository.. 47

7.2.4 R package .. 48

7.2.5 Task Execution Service .. 48

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 6 of 49

1 Introduction

1.1 Purpose
Workflow is centred on the recording and exploration of provenance: information
about entities, activities, and agents involved in producing a piece of data – or any
other kind of entity – and the relationships between them.

The PROV-O ontology (http://www.w3.org/TR/prov-o/) provides the basis of our
approach to defining and capturing provenance information. PROV-O can supply the
necessary framework to invalidate entities and/or activities, allowing the effects of
making a change in an analysis to be assessed based on the relationships of the
affected entity or activity with downstream activities and entities: everything
dependent on the change could, for example, be flagged as invalid, or as requiring
reassessment.

The purpose of this document is to map PROV-O terms onto pharmacometrics
workflow concepts, to allow the capture of the day to day activities performed within a
typical pharmacometric project

1.2 Audience
The Audience of this document is:

- Pharmacometricians, who can contribute to the completeness of the mapping

between workflow concepts and PROV-O

- Developers, who will be responsible for implementing the specification

1.3 Scope
This document covers:

- An analysis of PROV-O

- An analysis of pharmacometrics concepts

- A specification for mapping pharmacometrics concepts onto PROV-O, and

possible extensions

- Messages that encapsulate user actions and concepts to be stored within a

pharmacometrics project

The document does not provide an exhaustive overview of PROV-O – a detailed
description can be found at https://www.w3.org/TR/2013/NOTE-prov-overview-
20130430/

https://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
https://www.w3.org/TR/2013/NOTE-prov-overview-20130430/

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 7 of 49

2 PROV-O Terms

PROV-O defines the following terms that are used to capture all the
information necessary to define the provenance of items within a document.

2.1 Entity

An entity is a physical, digital, conceptual, or other kind of thing with some
fixed aspects; entities may be real or imaginary.

It has the following “subtypes”:

 Collection
 A grouping of Entities, and only entities.

 Plan
 A plan is an entity that represents a set of actions or steps

intended by one or more agents to achieve some goals
 Bundle

 A bundle is a set of provenance descriptions, so it can contain
Entities, Activities and Agents

 Note however that a bundle cannot contain more bundles

2.2 Activity

An activity is something that occurs over a period of time and acts upon or
with entities; it may include consuming, processing, transforming, modifying,
relocating, using, or generating entities.

An activity, has:

 id: an identifier for an activity;
 startTime: an OPTIONAL time (st) for the start of the activity;
 endTime: an OPTIONAL time (et) for the end of the activity;
 attributes: an OPTIONAL set of attribute-value pairs representing

additional information about this activity.

An example activity statement in PROV-N would be:

 activity(a1, 2008-08-30T01:45:36, 2008-08-30T01:45:36.123Z,

[prov:type=”ddmore:commit”])

http://www.w3.org/TR/2013/REC-prov-dm-20130430/Overview.html#dfn-activity

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 8 of 49

2.3 Agent

An agent is something that bears some form of responsibility for an activity taking
place, for the existence of an entity, or for another agent's activity.

Subtypes:

 Organisation (e.g. Leiden, Pfizer)
 Person (e.g. a User)
 Software Agent (e.g. R, Monolix)

2.4 Relationships

PROV-O defines a set of relationships that describe the interactions between each of
the entity types above.

Figure 1: Top level interactions1

2.4.1 Activity - Entity relationships

The following diagram lists the possible relationships that can exist between an
activity and an entity.

1 Original image from https://www.w3.org/TR/2013/REC-prov-dm-20130430/#prov-core-
structures-top

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#prov-core-structures-top
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#prov-core-structures-top

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 9 of 49

Figure 2: Entity-Activity Relationships2

The most relevant to us are:

Was
generated
by

Generation is the completion of production of a new entity by an
activity. This entity did not exist before generation and becomes
available for usage after this generation.

Used Usage is the beginning of utilizing an entity by an activity. Before
usage, the activity had not begun to utilize this entity and could not
have been affected by the entity

Was
invalidated
by

Invalidation is the start of the destruction, cessation, or expiry of an
existing entity by an activity. The entity is no longer available for use
(or further invalidation) after invalidation.

Was started
by

Start ◊ is when an activity is deemed to have been started by an entity,
known as trigger ◊. The activity did not exist before its start. Any

2 See original image at https://www.w3.org/TR/2013/REC-prov-dm-20130430/#figure-
component1

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#concept-start
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#concept-start-trigger
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#figure-component1
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#figure-component1

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 10 of 49

usage, generation, or invalidation involving an activity follows the
activity's start. A start may refer to a trigger entity that set off the
activity, or to an activity, known as starter ◊, that generated the trigger.

Was
ended by

End ◊ is when an activity is deemed to have been ended by an entity,
known as trigger ◊. The activity no longer exists after its end. Any
usage, generation, or invalidation involving an activity precedes the
activity's end. An end may refer to a trigger entity that terminated the
activity, or to an activity, known as ender ◊ that generated the trigger.

2.4.2 Entity - Entity relationships

The following diagram indicates in more detail the relationships that can exist
between two entities:

Figure 3: Derivations3

There is one type of relationship that can exist between entities (“derived from”),
which has three subtypes that we can use:

Term Strict definition

Derived A derivation is a transformation of an entity into another, an update of

3 See original image at https://www.w3.org/TR/2013/REC-prov-dm-20130430/#figure-
component2

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#concept-start-starter
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#concept-end
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#concept-end-trigger
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#concept-end-ender
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#figure-component2
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#figure-component2

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 11 of 49

from an entity resulting in a new one, or the construction of a new entity
based on a pre-existing entity.

Revision A revision is a derivation for which the resulting entity is a revised
version of some original. The implication here is that the resulting entity
contains substantial content from the original. Revision is a particular
case of derivation.

Quotation A quotation is the repeat of (some or all of) an entity, such as text or
image, by someone who may or may not be its original author.
Quotation is a particular case of derivation.

Primary
Source

A primary source for a topic refers to something produced by some
agent with direct experience and knowledge about the topic, at the time
of the topic's study, without benefit from hindsight. Because of the
directness of primary sources, they 'speak for themselves' in ways that
cannot be captured through the filter of secondary sources.

As such, it is important for secondary sources to reference those
primary sources from which they were derived, so that their reliability
can be investigated.

A primary source relation is a particular case of derivation of secondary
materials from their primary sources. It is recognized that the
determination of primary sources can be up to interpretation, and
should be done according to conventions accepted within the
application's domain

Derivations are specified as below:

wasDerivedFrom(ex:d; e2, e1, a, g2, u1, [ex:comment="a

righteous derivation"])

Here:

 d is the optional derivation identifier, e2 is the identifier for the entity being
derived,

 e1 is the identifier of the entity from which e2 is derived,
 a is the optional identifier of the activity which used/generated the entities,
 g2 is the optional identifier of the generation,
 u1 is the optional identifier of the usage, and
 [ex:comment="a righteous derivation"] is a list of optional attributes. In PROV-

N these fields are used to capture the type of derivation, i.e.:
 revision - prov:type='prov:Revision'
 quotation - prov:type='prov:Quotation'
 primary source - prov:type='prov:PrimarySource'

In this way we can capture the activity that generated the derivation.

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 12 of 49

2.4.3 Activity - Activity relationships

It is also possible to have relationships between activities.

These are summarized below:

Was
informed
by

Some anonymous entity passes between two activities. So, the
prov:wasInformedBy property allows the construction of provenance
chains comprising only Activities

Acted on
behalf of

Delegation is the assignment of authority and responsibility to an agent
(by itself or by another agent) to carry out a specific activity as a
delegate or representative, while the agent it acts on behalf of retains
some responsibility for the outcome of the delegated work.

2.4.4 Entities - Agent relationships

The following table lists the types of relationship that can exist between an agent and
an entity

Attributed to Attribution is the ascribing of an entity to an agent

The “attributedTo” statement can be used to ascribe of an entity to an agent.

When an entity e is attributed to agent ag, entity e was generated by some
unspecified activity that in turn was associated to agent ag. Thus, this relation is

useful when the activity is not known, or irrelevant.

An attribution relation, written wasAttributedTo(id; e, ag, attrs) in PROV-N, has:

 id: an OPTIONAL identifier for the relation;

 entity: an entity identifier (e);

 agent: the identifier (ag) of the agent whom the entity is ascribed to, and

therefore bears some responsibility for its existence;

http://www.w3.org/TR/2013/REC-prov-o-20130430/#wasInformedBy
http://www.w3.org/TR/2013/REC-prov-dm-20130430/#concept-delegation

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 13 of 49

 attributes: an OPTIONAL set (attributes) of attribute-value pairs representing

additional information about this attribution.

An example of this is shown below:

wasAttributedTo(tr:WD-prov-dm-20111215, ex:Paolo, [

prov:type="editorship"])

2.4.5 Activity – agent relationships

The following table lists the types of relationship that can exist between an agent and
an activity.

Associated
with

An activity association is an assignment of responsibility to an agent
for an activity, indicating that the agent had a role in the activity.

It further allows for a plan to be specified, which is the plan intended
by the agent to achieve some goals in the context of this activity.

An activity association is an assignment of responsibility to an agent for an activity,
indicating that the agent had a role in the activity. It further allows for a plan to be
specified, which is the plan intended by the agent to achieve some goals in the
context of this activity.

An association ◊, written wasAssociatedWith(id; a, ag, pl, attrs) in

PROV-N, has:

 id: an OPTIONAL identifier for the association between an activity and an agent;
 activity: an identifier (a) for the activity;
 agent: an OPTIONAL identifier (ag) for the agent associated with the activity;

While each of id, agent, plan, and attributes is OPTIONAL, at least one of
them MUST be present.

A plan is an entity that represents a set of actions or steps intended by one or more
agents to achieve some goals. The type of a Plan entity is denoted by prov:Plan.

2.4.6 Object - object relationships

All the above relationships are subtypes of one relationship - “wasInfluencedBy”. This
can be used to ascribe any relationship between any objects.

Influence is “the capacity of an entity, activity, or agent to have an effect on the
character, development, or behaviour of another by means of usage, start, end,
generation, invalidation, communication, derivation, attribution, association, or
delegation”

The W3C recommends not to use this relationship, but we can use it if necessary -
though we should attach appropriate attributes to the relationship to specify it
properly.

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#dfn-wasassociatedwith
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#association.id
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#association.agent
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#association.plan
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#association.attributes

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 14 of 49

3 Pharmacometrics Workflow Concepts

3.1 Entities
According to the PROV-O specification, an entity is “a physical, digital, conceptual, or
other kind of thing with some fixed aspects; entities may be real or imaginary.”

When an “entity” is defined, it normally does not represent the entire entity itself, but
indicates where it can be located or retrieved later, i.e. it is a representation of that
entity.

3.1.1 Typical project entities

This definition works perfectly on entities that can be directly mapped to files within a
pharmacometric project, for instance:

 a dataset
 a NONMEM control file
 an R script
 an output file (e.g. generated by NONMEM or Monolix)
 a graphical output (e.g. a PNG)
 a report (e.g. a Word document or a PDF)

These types of entity can always be retrieved from a secure storage location (e.g. a
version control system) at any point in the future, subject to proper backup and
recovery procedures, as long as the ID of the entity can be traced back to the
individual file (and version of that file).

This definition works less well on “imaginary” or “conceptual” entities as they do not
“exist” (as much as anything digital exists), and cannot easily be retrieved at a later
date.

Examples of “imaginary” or “conceptual” entities would be:

 a decision
 an assumption
 a data/model/parameter/task object defined within an MDL file

Capturing this type of entity will require creation of a file that represents that entity
and contains information pertinent to it, which is added to the version control system.

There are a number of other states/flags that we wish to be able to attach to entities,
to identify:

 Importance/Status of an output
 QC status
 “Significance” within the project

These properties can change over time and have a lifecycle that is independent of
the entity itself, even though the entity has not changed. Consequently it is not an
appropriate use of PROV-O properties to capture this information.

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 15 of 49

The following information must be supported:

Field Meaning Possible values

QC Status Whether this entities has passed or
failed a QC process

<blank> (indicates it has not
been QCed)

true (passed QC)

false (failed QC)

final This is the final model true / false

base This is the base model true / false

pivotal This model is pivotal true / false

Strictly speaking, the description of an entity is unrelated to its provenance.

However, there must be a link between the description of the entity, and the entity
that it is describing, so that the relationship can be followed.

3.1.2 Assumptions

Transparency in the setting and evaluation of assumptions that may impact model
application is of great importance in the planning and documentation of any model-
informed drug discovery and development (MID3) activity.

Assumptions are documented using a structured ASCII text file, using fields as
defined below:

Field name Meaning Possible values

Type The classification of the
assumption

pharmacological /

physiological /

disease /

data /

mathematical/statistical

AssumptionBody The assumption itself Free text (typically 1-2
sentences)

Justification The justification for making the
assumption

Free text (typically 1-2
sentences)

Established Is the assumption new, or has it
been previously established?

new / established

Testable Is the assumption testable? true / false

TestApproach How to test the impact of the
assumption

Free text (typically 1-2
sentences)

TestOutcome How to evaluate the outcome of the
testing of the assumption

Free text (typically 1-2
sentences)

An example in XML:

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 16 of 49

<?xml version="1.0"?>

<Assumption>

 <Type>Pharmacological</Type>

 <AssumptionBody>Emax model fixed to 100% is a more

physiological description of the data compared to a linear

model.</AssumptionBody>

 <Justification>Emax model is not better than linear

model; however, for this drug class, Emax of 100% is more

realistic.</Justification>

 <Established>New</Established>

 <Testable>Testable with a wider range of concentrations

(external/future study).</Testable>

 <TestApproach>

Comparison of simulated metrics of interest between the two

competing models.

 </TestApproach>

 <TestOutcome>To achieve a 90% response (assumed to be

clinically meaningful) requires a twofold higher dose using

the Emax model compared to the linear model.</TestOutcome>

</Assumption>

3.1.3 Decisions

Decisions (model selection, based on outputs from assumption testing, and similar)
are crucial to document. Decisions are defined as entities which physically take the
form of simple ASCII text files containing 1-2 sentences describing the decision
made.

<?xml version="1.0"?>

<Decision>

 This is the base model to be carried forward into the

stepwise covariate analysis.

</Decision>

3.2 Relationships between entities
Models, scripts, and data are created and change over time. We wish to capture the
relationships between these types of entities so that we understand where “they
came from”.

We need to capture the following relationships between “entities” in the system.

Entity type Types of relationship

Model file Revisions of a model (i.e. there is a new version of the file that
contains the model definition)

One model is “derived” from another model, as it contains

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 17 of 49

modifications to a previous model that alters how it
fits/describes the input data.

One model is “influenced by” a model, as there is some loose
relationship between them.

R Script

The software agent runs the script; the R script defines what
are files are inputs, and how to generate the outputs.

The script is not directly responsible for creating the outputs;
this is undertaken by the software that runs the script.

Assumption

An assumption influenced the path of development of a
model, or the way that a script was implemented.

Decision

A decision is based on a number of entities. The decision
itself is created as a result of the act of “taking a decision”.

Description

A “description” adds extra information or context about
another entity. It in some way characterizes that other entity.

A description can be updated over time, independently of the
entity it is describing.

3.3 Activities
An “activity” is something that occurs over a period of time and acts upon or with
entities; it may include consuming, processing, transforming, modifying, relocating,
using, or generating entities.

In a typical pharmacometrics modelling project, the following are examples of
activities undertaken by the modeller that we would wish to capture

 cloning a model

 updating a model

 updating a script

 performing a parameter estimation

 performing a simulation

 performing an SCM

 QC’ing a model

 making an assumption

 taking a decision

 updating an entity’s description (i.e. the metadata that describes an entity
within the workflow system)

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 18 of 49

If an action results in the existence of a new entity in the system, then it should be
captured as an activity

3.4 Agents
An agent is something that bears some form of responsibility for an activity taking
place, for the existence of an entity, or for another agent's activity.

The PROV-O standard supports the following types of “Agent”:

- A person

- An organisation

- An instance of a software

There is no mechanism to transform Agents and capture revisions. If we attach any
sort of state to a user (e.g. “disabled”, or “member of a team”), or alter it in any way,
we cannot refer back to the previous revision.

During the life of an analysis project, the follow concepts hold “responsibility” for
performing the activities:

- Individuals – i.e. people

- A software package – e.g. R, NONMEM, Monolix

- The environment/platform upon which that software was executed

The first element is important to capture so that we have a record of who undertook
the action. The second and third elements are necessary, so that it is possible to
reliably reproduce results, and re-execute activities.

As with Entities, the id of an Agent should uniquely and perpetually identify that
Agent within the scope of the workflow server. Agents must be valid across different
workflow “instances” – i.e. user “jchard” must refer to the same user, in every
modelling project.

Likewise, a software agent named “R-3.1.2” must always refer to the same software
instance, to guarantee the same results when an activity is rerun. This includes, in
this case, the combination of packages and versions that may be used by that
“instance”.

In order to fully capture the information regarding the software used to run an activity,
we need to store:

- The software and version used

- The host platform/environment used on which that software was installed

We therefore propose an additional type of Agent – “environment” – which defines
the host platform.

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 19 of 49

4 Mappings onto Provenance Concepts

4.1 Conventions

4.1.1 Naming conventions

There is some inconsistency when naming concepts in PROV-O with respect to

capitalisation. Sometimes concepts use Camel Case (“wasGeneratedBy”,

“wasAssociatedWith”), and sometimes it uses strict capitalisation

(“prov:Person”, “prov:Plan”)

We shall use Camel Case when defining attribute names and values.

4.1.2 Entity creation

There are two mechanisms in PROV-O for attaching the responsibility for the
creation of an entity to an individual. These are:

- “wasAttributedTo”. This is a simple Entity –> Agent relationship (see

2.4.4) that indicates that the Agent was responsible for the Entity

- Via the more complex “Agent -> Activity -> Entity” relationship

o The User Agent was associated with an Activity

o The Activity generated an Entity

Our convention will be to use the second form to ascribe attribution to an Entity. This
allows us to:

- Provide inputs to the Activity.

- Attach attributes onto the Activity

- Invalidate other Entities as a result of this Activity

..as necessary.

By following this convention we avoid confusion around when it is possible to simply

use “wasAttributedTo” or not.

4.2 Entity capture
The provenance ontology standard requires a minimal amount of information to
define entities - all that is necessary is an id, which can be used to universally,
uniquely identify that entity. It is also possible to attach any arbitrary attributes to an
entity to describe it within the system.

The entity id can also be prefixed with a namespace that can be combined with the
ID to further identify it.

The ontology also predefines a number of attributes that may be used to define an
entity:

 prov:label (0 or more)

 prov:location (0 or more)

 prov:type (0 or more)

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 20 of 49

 prov:value (0 or 1)

4.2.1 Usage of existing attributes

4.2.1.1 Namespace

We will use the “namespace” to define the URL of the repository in which the entity is
stored.

We will use the “repo” as the shorthand name of the namespace within each
provenance document.

Each provenance document will include the following namespaces:

default <http://ddmore.eu/workflow/#>

prefix ddmore <http://ddmore.eu/workflow/#>

prefix mid3 <http://ddmore.eu/mid3/#>

There will be extra namespaces added that correspond to the type of repository that
the code is being stored in, and the unique identifier for that particular repository.

These namespaces are:

Namespace
name

Description Examples

vcs The type of
repository

https://www.github.com/#

repo The location of
the repository

https://github.com/johndoe/examplerepo.git/#

How a client utilises this information is implementation dependent.

4.2.2 Entity Types

The following table summarizes the types of entity we will track in the system that are
in addition to the existing types defined by the PROV-O standard. These will be
captured using the “prov:type” attribute.

Entity type Examples Metadata to describe it

Model NONMEM control file (.ctl,
.mod)

MDL file (.mdl)

Monolix model (.mlxtran)

prov:type=ddmore:model

Dataset CSV (.csv)

Table file (.tab)

Data file (.dat)

prov:type = ddmore:dataset

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 21 of 49

PharmML archive .phex prov:type = ddmore:phex

Standard output
object

.so prov:type = ddmore:so

Output NONMEM output file (.lst,
.out)

Monolix output file

Output tables

prov:type = ddmore:output

Image PDF image

PNG image

JPG image

prov:type = ddmore:image

Assumption Structured TXT document prov:type =
ddmore:assumption

Decision Structured TXT document prov:type = ddmore:decision

Document HTML document

DOCX document

PDF document

RTF document

prov:type =
ddmore:document

Description A description of another
entity

prov:type =
ddmore:description

QC status An entity that encapsulates
the QC status of another
Entity

prov:type = ddmore:qc

Bundle A Bundle that defines the
contents of a commit to a
version control system

ddmore:type=ddmore:commit

Bundle A Bundle that defines the
Description of an Entity

ddmore:type =
ddmore:description

4.2.3 Entity Attributes

“prov:location” will be used to identify the location within the version control system of
the file that this entity represents.

“prov:label” is designed to “provide a human-readable representation of an instance
of a PROV-DM type or relation”. A number of labels can be attached.

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 22 of 49

Therefore we will use “prov:label” to provide a human readable description of the
entity or activity, typically the name of the file with the path stripped from it.

4.2.4 Assumptions

An assumption is realised in the repository as an XML file. This allows the user
interface to read and display the assumption in an attractive format.

The PROV-O entity will refer to this file in the repository.

It will be necessary to query the Thoughtflow server for “assumption” entities,
according to the type of assumption. In order to support this, the following fields will
be used as attributes of the Entity. Note that these will be namespaced to “mid3”:

Metadata field name Possible values

mid3:assumptionType pharmacological

physiological

disease

data

mathematical

mid3:established new

established

mid3:testable true

false

These fields must be identical to the content of the XML file and should be calculated
and added onto the entity by the server when the entity is processed.

There will be an activity - “make assumption” – that has one output – the assumption
itself. There may be a number of inputs that provide some reasoning for the
assumption that can be tracked. The activity will be linked to a user agent who was
responsible for making that assumption.

In terms of the impact that this assumption has on the project, the “wasInfluencedBy”
relationship is the most general relationship that we can use for this purpose. We will
make this relationship more specific by attaching the “prov:type = ddmore:predicates”
onto the influence, as follows:

entity(repo:abc123/assumptions/assumption1.xml,

[prov:location=”assumptions/assumption1.xml”,

prov:type=”ddmore:assumption”, mid3:testable=”true”])

entity(repo:bda321/models/run1.mod, [

prov:type=”ddmore:model”])

wasInfluencedBy(repo:bda321/models/run1.mod,

repo:abc123/assumptions/assumption1.xml,

[prov:type=”ddmore:predicates”])

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 23 of 49

Should this assumption change, or become invalidated, then the “influenced” model
needs to be examined to establish the impact of this change.

This relationship is unidirectional; if the model changes, there is no impact on the
assumption. However, there is still an influence on the later version of the model that
needs to be followed.

4.3 Entity Relationships
Models, scripts, and data are created and change over time. We wish to capture the
relationships between these types of entities so that we understand where “they
came from”.

We have 4 types of “derivation” available to us. Note however that we can attach
metadata to a relationship in order to impart extra meaning.

The following relationships are available:

 “derived from” - is a transformation of an entity into another, an update of an
entity resulting in a new one, or the construction of a new entity based on a
pre-existing entity

 “revision of” - a derivation for which the resulting entity is a revised version of
some original

 “quotation” - a quotation is the repeat of (some or all of) an entity, by
someone who may or may not be its original author.

 “primary source” - A primary source for a topic refers to something produced
by some agent with direct experience and knowledge about the topic, at the
time of the topic's study, without benefit from hindsight.

An extra relationship is also available - “wasInfluencedBy”. This is a general
relationship that can be used to capture a link between any object in the system
(i.e. between agents, entities and activities). All other relationships (e.g. used,
generated, derived from, etc.) are specialisations of this relationship.

We will use these relationships as follows:

Relationship Usage

derived from Capturing parent/child relationships between models

revision of Capturing updates/new versions of existing files. This replaces
the previous version of the entity (i.e. the previous version is no
longer “in” the project)

quotation Not planned to be used, although it may be useful for QC
purposes as there is no change to the original.

However, semantically, “quotation” does not appear to be the
correct term to use for this.

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 24 of 49

primary source Would be used when a model is imported into a project from a
model library.

was influenced
by

A weak relationship exists between two entities; a change in the
“influencer” will not necessarily affect the “influencee”

4.3.1 Incorporating Activities into a relationship

In section 4.1.2 we set out the convention of capturing the creation of Entities,
whereby an Activity is also included in the relationship between two Entities.

When one Entity is derived from another Entity, “was derived from” relationship
allows an Activity to be included in the statement, as below:

wasDerivedFrom(generatedEntity, usedEntity, activity,

generatedId, usedId, [prov:type="ddmore:specialisation"])

(See section for 2.4.2 details)

In PROV-N, there is no special statement that differentiates between
“wasDerivedFrom”, “revision” or “primary source”. These specialisations of “derived
from” are encoded in the prov:type attribute.

The following types of Activity should be used with the different types of derivation:

Derivation type Activity type

ddmore:specialisation ddmore:clone

prov:Revision ddmore:commit

prov:PrimarySource ddmore:import

This activity can also be used to mark “invalidation”. For instance, an output will be
invalidated by the action made by a user to an upstream file (e.g. modification of the
base model)

4.3.2 Describing Entities

According to section 3.1.1 there is a requirement to attach descriptions to Entities
that are captured within the Thoughtflow server. This is not strictly within the scope of
“provenance” but it is within the field of responsibility of the Thoughtflow server.

Therefore we need some strategy for incorporating this information into the
Thoughtflow database by extending the relationships available in the Prov-O
standard.

In Provenance terms, we have two separate entities that we would like to capture:

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 25 of 49

- The Entity being described (e.g. a model)

- The description of that Entity

Both of these Entities have their own life cycle - both the model and the description
can be modified independently, by different users.

The “description” Entity may also incorporate many facets, such as:

- Whether the model is a base model or a final model

- Whether the model has been QC’ed

We will use the “influence” relationship to capture the relationship between the
“Entity” and the “Entity Description”, and give the relationship a type of “describes”.

See section 5.2.6 for details on how this is used in practice.

4.3.3 Relationship Metadata

The following table thus summarises the relationship types that we will use to provide
extra information about the meaning of the relationship.

Relationship Attributes Meaning

wasDerivedFrom prov:type =
ddmore:specialisation

Used to denote that a model is a
child of another model.

wasInfluencedBy prov:type =
ddmore:predicates

Used to denote that an Entity is
influenced by an Assumption

wasInfluencedBy prov:type =
ddmore:describes

Used to denote that an Entity is
influenced by a Description

4.4 Activities
The system must support the following “other” types of Activity (beyond updating or
cloning an existing entity)

Metadata field name Value Meaning

prov:type ddmore:commit Commit changes to the
version control system

prov:type ddmore:estimate Perform a parameter
estimation

prov:type ddmore:simulate Run a simulation

prov:type ddmore:qc Perform a QC

prov:type ddmore:decision Make a decision

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 26 of 49

prov:type ddmore:assumption Make an assumption

prov:type ddmore:describe Attach a description to an
entity

Every entity creation/transformation must be linked via an Activity. This includes:

- Making an assumption or decision
- Copying/Moving a file
- Cloning a model (i.e. create a child)
- Updating metadata

This allows us to capture who performed the action, when it took place, and add any
other metadata as necessary.

It also allows us to record the impact of this change elsewhere in the system, as
Entities are only Invalidated by Activities.

4.4.1 Activity capture

Activities should be captured as follows:

- Create the activity

- Record the inputs and outputs with “used” and “wasGeneratedBy” statements

- Record the plan and software agent with “wasAssociatedWith”

- Record who ran the activity with “wasAssociatedWith”

4.4.1.1 Plans

A “plan” is a special type of Entity that makes up the set of actions or steps that was
followed by the Agent to achieve their goals in the context of an activity.

In terms of the types of activities that take place in a project, the “plans” in each case
are:

Activity Type Plan

Run an R script in batch The R script that was executed

Run an estimation with NONMEM N/A

Run an estimation with PsN The PsN script (“execute”)

Run an scm with PsN The PsN script (“scm”)

4.4.1.2 Associating an activity with a plan

Consider an R script being run. We need to capture:

- The software used to run the script

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 27 of 49

- The script that was run

- The inputs to the script, and the artefacts that the script generated

- The user who ran the script

This can be achieved with the following statements:

entity(R-3.1.2, [prov:type=”prov:SoftwareAgent”])

entity(userA, [prov:type=”prov:Person”])

entity(RScript, [prov:type=’prov:Plan’,

prov:location=’/path/to/file/Script.R’])

activity(RunRScript, -, -)

wasAssociatedWith(RunRScript, R-3.1.2, RScript)

wasAssociatedWith(RunRScript, userA)

Where a1 is the activity, ag1 is the agent, e1 is the plan, followed the attributes.

The first “wasAssociatedWith” statement links the activity with the software and script
(plan). The second “wasAssociatedWith” statement links the activity with the user.

4.4.1.3 Links between activities

The main mechanism for capturing links between activities is the “wasInformedBy”
relationship. This indicates the “some anonymous entity” passed between the two
activities; we don’t need to capture entities passing between them. The intent of this
is to capture chains of activities.

This can be used to capture instances where some script spawns new activities, for
instance:

- An R script calls “estimate”

- PsN generates multiple NONMEM runs

In both of these cases, we do not know what may have been passed to the
“estimate” function as an input – the model could have been constructed in memory,
and supplied to the called routine.

Likewise, the artefacts generated by the downstream activity may or may not be used
by the calling script. The information we can capture is:

- The original script

- The inputs to that script

- The activity spawned by the script

- The artefacts generated by the spawned activity (we do not necessarily know
the inputs)

- The outputs generated by the original script

We can be more exact about the outputs generated by the original script; it is

“all outputs” – “outputs generated by spawned activities”

For the purposes of “regeneration”, all that should be done is run the original script,
which will execute the same downstream activities as before. However, for the

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 28 of 49

purposes of “correctness”, we should record which activities generated which
entities.

4.5 Agents
The “agent” itself is described by an id and a list of attributes. We will specify the list
of attributes we will use to describe each agent.

4.5.1 Person Agents

The following information should be used to define person agents:

Attribute name Description

prov:label Human readable description of the user

username A unique user name for this user. Typically used to
authenticate this user within the organisation e.g. the LDAP
name

email The user’s email address

4.5.2 Software Agents

The following information should be used to define person agents:

Attribute name Description

 prov:label Human readable description of the software

version Version number of the software

name The name of the software

type Any type information to attach to the software e.g. test,
production

4.5.3 Environment Agents

An “environment” agent will be denoted with a prov:type of “ddmore:environment”,
i.e.

agent(ex:ag4, [prov:type='ddmore:environment'])

The following information should be used to define environment agents:

Attribute name Description

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 29 of 49

prov:label Human readable description of the environment

version The underlying operating system

operatingSystem Version number of the environment

ipAddress The name of the environment

software The IP address of the environment (if available)

4.6 Modelling Steps
Existing software packages (such as Pfizer’s ePharm, Mango Solutions’ “Navigator”4

and Scinteco’s “Improve”5) have a concept of a “modelling step”.

This is an abstraction that encapsulates the concept of “running a model” (whether it
is a parameter estimation, simulation, or some other analysis of a model). This
typically includes:

- Datasets consumed by the model

- The model file

- The results generated by running the model with the target software (for

example NONMEM or Monolix)

In Prov-O terms, this is equivalent to an Activity of type “estimate” or “simulate”.

- The “inputs” to the Step are the files “used”

- The outputs from the Step are the files “generated”

- The software agent is the software used to perform the estimation or

simulation

- The user agent is responsible for running the model

- The “plan” is any shell/wrapper script that was used to invoke the target

software (e.g. psn.execute)

4 http://www.mango-solutions.com/wp/products-services/products/navigator/
5 http://www.scinteco.com/

http://www.mango-solutions.com/wp/products-services/products/navigator/
http://www.scinteco.com/

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 30 of 49

5 User actions to capture

5.1 Principles

The mechanism by which we capture the actions taken by the user is based on the
following principles:

1. All “file type” entities referenced within the workflow database must be
persistent. This means that is must be stored within a reliable, secure,
referenceable and perpetual system - for instance a version control system.

2. All records stored within the database are immutable - i.e. they cannot be
changed once they are stored. If a change it necessary, then it should be
captured as a new record, which replaces the previous one.

3. All actions that create new entities must also be captured as an Activity, to
keep a record of who performed that action and when.

4. Activity IDs can be created on demand by any client, as long as they retain
the namespace that indicates which project the activity belongs to, and they
are guaranteed to be unique

5. The ID of Entities that refer to a file in the version control system should be
comprised of the Repository URL, the ID of the commit that includes this
change, and the location of the file within that commit.

6. The ID of Entities that do not refer to files in a version control system can be
created on demand by the client, as long as they retain the namespace, and
they are guaranteed to be unique.

5.2 Scenarios

The following scenarios summarize the actions that a user may perform on entities,
and indicate how they will be captured in PROV-N.

For brevity, the start/end document tags, and the namespaces are omitted in all but
the first example.

5.2.1 A “message” is sent to the Thoughtflow server

This example captures any scenario where a message is sent to the server. This
could be because a file has been committed to the repository, or some other
information will be added to the server (for example – an Entity has been ascribed a
Description).

All interactions with the model repository happen with a “Bundle”, which allows us to
attach “provenance” to a set of changes. This is also necessary to allow entities to be
reference in later message. The examples in this section build on this concept, by
only defining the content of the Bundle. The information to capture is:

- There was an Activity, for example “commit changes to the repository”, along
with a date and time

- The user agent that was responsible for the message

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 31 of 49

- The contents of the message (in the bundle)

An example of such a document (in PROV-N) is as follows:

document

default <http://www.ddmore.eu/#>

prefix xsd <http://www.w3.org/2001/XMLSchema#>

prefix ddmore <http://www.ddmore.eu/#>

prefix prov <http://www.w3.org/ns/prov#>

prefix repo <https://github.com/msmith/MDLProject#>

prefix vcs <https://github.com/#>

agent(msmith)

entity(repo:abc123, [prov:type='prov:Bundle',

ddmore:type=”ddmore:commit”,

vcs:repo="https://github.com/msmith/MDLProject",

vcs:type="git", vcs:commitId='abc123', vcs:branch='master',

prov:label="Initialised project data",

vcs:message="Initialised project data"])

activity(repo:123456, 2016-07-20T16:02:36Z, -,

[prov:type="ddmore:commit"])

wasAssociatedWith(repo:123456, msmith, -)

wasGeneratedBy(repo:abc123, repo:123456, -)

bundle repo:abc123

entity(repo:abc123/data/warfarin_conc.csv,

[prov:label="warfarin_conc.csv",

prov:location="data/warfarin_conc.csv",

prov:type="ddmore:dataset"])

endBundle

endDocument

In this case:

- There is a bundle in this message,
o It is a commit

 to a Git repository

 with a commit ID of abc123

 onto the master branch
 with the commit message “Initialised project data”

- User msmith was responsible for this bundle (commit)

- The bundle is linked to a “ddmore:commit” Activity

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 32 of 49

- The bundle itself was created as a result of this commit

- The content of the bundle is the file “warfarin_conc.csv” which is located

in the folder “data”

5.2.1.1 Referring to information in other bundles

Every provenance document should be standalone and internally consistent. PROV-
O supports cross referencing entities across bundles with the “mentionOf” statement.

A mention ◊ relation, written prov:mentionOf(local, remote, bundle) in

PROV-N, has:

 specificEntity: an identifier (local) of the entity that is a mention of the

general entity (remote);

 generalEntity: an identifier (remote) for an entity that is described in

bundle bundle.

 bundle: an identifier (bundle) of a bundle that contains a description

of remote and further constitutes one additional aspect presented by local

In practice, when an entity was created in another bundle, a “mention of” statement is
required if a link is being added between the previous entity and the entity in the
latest bundle.

5.2.2 Create child model

Model P exists within a project. It was committed in a previous bundle (abc123).

Model Q is a new file that is a child model of Model P. It is being committed in bundle

def456, by user jwilkins.

mentionOf(temp, repo:abc123/modelP, repo:abc123)

entity(repo:def456/modelQ, [prov:type="ddmore:model",

prov:location="/models/modelQ.ctl”])

activity(repo:cloneModel, -, -, [prov:type=”ddmore:clone”])

wasAssociatedWith(repo:cloneModel, jwilkins)

used(repo:cloneModel, temp)

wasGeneratedBy(repo:def456/modelQ, repo:cloneModel)

wasDerivedFrom(repo:modelQ, temp, repo:cloneModel,

[prov:type=”ddmore:specialization”])

5.2.3 Weak links between models

Model P exists within a project. It was committed in a previous bundle (abc123).

https://www.w3.org/TR/2013/NOTE-prov-links-20130430/#dfn-mentionof

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 33 of 49

Model P has influenced the development of Model Q, but model Q is not a child.

mentionOf(temp, repo:abc123/modelP, repo:abc123)

entity(repo:modelQ, [prov:type="ddmore:model",

prov:location="/models/modelQ.ctl”])

wasInfluencedBy(repo:modelQ, temp)

The “wasInfluencedBy” relationship can be augmented with additional descriptions to
ascribe extra meaning to it:

wasInfluencedBy(repo:modelQ, temp,

[prov:type=”sharesCovariateModel”]])

wasInfluencedBy(repo:modelQ, temp,

[prov:type=”sharesStructuralModel”]])

These descriptions can be added on demand but should be consistent within an
organisation to allow this information to be queried and extracted from the database.

5.2.4 Updating a file

User A alters the content of a file.

Version n of the file is no longer available in the latest version of the “project”.

As the previous file is not there any longer, it should be captured as a revision,
version n+1.

This new version is committed in bundle def456

mentionOf(temp, repo:abc123/modelA, repo:abc123)

entity(repo:def456/modelA, [prov:type="ddmore:model",

prov:location="/folder/modelA.ctl”])

activity(repo:updateModel)

wasGeneratedBy(repo:def456/modelA, repo:updateModel)

used(repo:updateModel, temp)

wasAssociatedWith(repo:updateModel, userA)

wasDerivedFrom(repo:def456/modelA, temp, repo:updateModel,

[prov:type='prov:Revision'])

See the solution design for more details on entity ids.

5.2.5 Moving a file

A user moves a file within a project into a different location in commit def456

The file is otherwise unchanged. The file is no longer available at the previous
location.

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 34 of 49

As the previous file is not there any longer, it should be captured as a revision.

mentionOf(temp, repo:abc123/modelA, repo:abc123)

entity(repo:def456/modelA, [prov:type="ddmore:model",

prov:location="/new/folder/modelA.ctl”])

activity(repo:moveEntity)

wasGeneratedBy(repo:def456/modelA, repo:moveEntity)

used(repo:moveEntity, temp)

wasAssociatedWith(repo:moveEntity, jwilkins)

wasDerivedFrom(repo:def456/modelA, temp, repo:moveEntity,

[prov:type='prov:Revision'])

5.2.6 Adding metadata to an Entity

In this case, the user wishes to add some description to the Entity, for instance:

 update the label (“final”, “base”, <none>)
 update the QC status (“true”, “false”)
 update its pivotal status (“true”, “false”)

According to principle 2, the record of an Entity should be immutable in the workflow
database. Moreover, when a description is added to an Entity, the entity has not
changed – in terms of provenance, there is no new revision of the entity to track.
What has changed is the entity description, not the entity it is describing.

We have two independent entities, the entity, and the entity description and relate
them with the wasInfluencedBy relationship.

Say model A was committed in Bundle abc123

User jwilkins ascribes a description to it.

The description Entity is not attached to a specific commit, as there is no concrete file
that backs it up in the version control system.

However, the description Entity was included in a Bundle. In the example in 5.2.1, the
Bundle was a commit to a version control system. This time, there is no Commit, so
the type of Bundle is different.

document

default <http://www.ddmore.eu/#>

prefix ddmore <http://www.ddmore.eu/#>

prefix prov <http://www.w3.org/ns/prov#>

prefix repo <https://github.com/msmith/MDLProject#>

agent(jwilkins)

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 35 of 49

entity(repo:789bca, [prov:type='prov:Bundle',

ddmore:type=’ddmore:description’])

activity(repo:789789, 2016-07-20T16:02:36Z, -,

[prov:type="ddmore:description"])

wasAssociatedWith(repo:789789, jwilkins, -)

wasGeneratedBy(repo:789bca, repo:789789, -)

bundle repo:789bca

mentionOf(temp, repo:abc123/modelA, repo:abc123)

entity(repo:789bca/description,

[prov:label="ModelA description",

prov:type="ddmore:description", ddmore:pivotal=”true”])

wasInfluencedBy(temp, repo:789bca/description,

[prov:type=”ddmore:describes”])

endBundle

endDocument

All the “description” fields will be attached to the attributes on the Entity. The
following table lists the field names and their possible values.

Metadata field
name

Meaning Possible values

ddmore:qcStatus Whether this entity has passed or
failed a QC process

<blank> (indicates it has
not been QCed)
true (passed QC)
false (failed QC)

ddmore:final This is the final model true / false

ddmore:base This is the base model true / false

ddmore:pivotal This model is pivotal true / false

5.2.7 Updating the description of an Entity

The following diagram shows the graph that represents a description being updated
(green is activity, blue is an entity)

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 36 of 49

This is achieved as follows (building on the previous message):

document

default <http://www.ddmore.eu/#>

prefix ddmore <http://www.ddmore.eu/#>

prefix prov <http://www.w3.org/ns/prov#>

prefix repo <https://github.com/msmith/MDLProject#>

agent(msmith)

entity(repo:111aaa, [prov:type='prov:Bundle',

ddmore:type=’ddmore:description’])

activity(repo:4444, 2016-07-20T16:02:36Z, -,

[prov:type="ddmore:description"])

wasAssociatedWith(repo:4444, msmith, -)

wasGeneratedBy(repo:111aaa, repo:4444, -)

bundle repo:111aaa

mentionOf(oldDesc, repo:789bca/description, repo:789bca)

wasInvalidatedBy(oldDesc, repo:4444, 2016-07-20T16:02:36Z)

mentionOf(modelRef, repo:abc123/modelA, repo:abc123)

entity(repo:111aaa/description,

[prov:label="ModelA description",

prov:type="ddmore:description", ddmore:pivotal=”false”])

wasDerivedFrom(repo:111aaa/description, oldDesc,

repo:4444, [prov:type='prov:Revision'])

wasInfluencedBy(modelRef, repo:111aaa/description,

[prov:type=”ddmore:describes”])

Influence (new)

Revision of

Description

v1

Entity

Influence (old)

Description

v2

Update
description

invalidate

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 37 of 49

endBundle

endDocument

5.2.8 QC Status

Section 4.2.2 introduced the entity type “ddmore:qc”. This type of Entity behaves in
the same was as a description Entity, but only captures the QC status of the Entity.

This allows the QC status to evolve separately from the model description.

While attaching a QC status to an Entity is similar to the scenario above, the QC
activity is a different activity type.

There may also be Entities created as a result of the QC Activity. The actual QC
activity itself, therefore, will generate multiple bundles to capture:

- The files being committed to the version control system

- The updated QC description entity

The following document shows how a QC Activity should be recorded.

document

default <http://www.ddmore.eu/#>

prefix ddmore <http://www.ddmore.eu/#>

prefix prov <http://www.w3.org/ns/prov#>

prefix repo <https://github.com/msmith/MDLProject#>

agent(pchan)

activity(repo:222222, 2016-07-20T16:02:36Z, -,

[prov:type="ddmore:qc"])

wasAssociatedWith(repo:222222, pchan, -)

entity(repo:444444, [prov:type='prov:Bundle',

ddmore:type=’ddmore:description’])

wasGeneratedBy(repo:444444, repo:222222, -)

entity(repo:555555 [prov:type='prov:Bundle',

ddmore:type=”ddmore:commit”,

vcs:repo="https://github.com/msmith/MDLProject",

vcs:type="git", vcs:commitId='555555', vcs:branch='master',

prov:label="Added QC report", vcs:message="Added QC

report"])

wasGeneratedBy(repo:555555, repo:222222, -)

mentionOf(modelRef, repo:abc123/modelA, repo:abc123)

bundle repo:444444

entity(repo:444444/description,

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 38 of 49

[prov:type="ddmore:qc", ddmore:qcStatus=”true”])

wasInfluencedBy(modelRef, repo:444444/description,

[prov:type=”ddmore:describes”])

endBundle

bundle repo:555555

entity(repo:555555/QCReports/Report.doc,

[prov:type="ddmore:document”])

endBundle

endDocument

An Activity can generate as many outputs as required - so there could be multiple QC
descriptions, reports, or decisions.

5.2.9 Making an Assumption/Decision

The pattern for making an assumption or decision is identical in concept to any other
Activity that generates an output, as the Assumption/Decision is backed up by a file
within the version control system. The message would be comprised of the following:

- The definition of the bundle (i.e. the commit to the version control system,

with the user responsible and the commit message)

- The contents of the bundle:

o The Assumption/Decision entity that points to the XML

o The Activity with type “ddmore:assumption”

o The connection between the “activity” and the assumption being

created (“wasGeneratedBy”)

An example of the bundle contents is shown below:

entity(repo:87654/assumptions/assumption1.xml,

[prov:type=”ddmore:assumption”,

mid3:assumptionType=”pharmacological”,

mid3:established=”new”, mid3:testable=”true”])

activity(repo:374786, 2016-07-20T16:02:36Z, -,

[prov:type="ddmore:assumption"])

wasGeneratedBy(repo:87654/assumptions/assumption1.xml,

repo:374786)

wasAssociatedWith(repo:374786, msmith, -)

5.2.10 Updating Entities revisited

Consider the situation where an Entity E has a description D and a QC status Q.

The Entity is revised, in activity A, creating a revision of this Entity, with new ID E1.

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 39 of 49

The “commit” activity:

- invalidates the QC status entity “Q”

- Creates a new wasInfluencedBy record between the Description entity D

and the new Entity E1.

If the Description Entity then changes with Activity A2, creating description entity D1

- Entity D is invalidated

- A new wasInfluencedBy record is created between Entity E1 and

description entity D1

- However, no new wasInfluencedBy records are created between the

original entity E and the new description D1.

It is the responsibility of the Thoughtflow server to maintain this when Entities are
updated.

5.2.11 Template models

Model A exists within a central repository. It was committed in the bundle with commit

ID edc456

Model B is a new file that is added into the project, by directly copying model A.

document

default <http://www.ddmore.eu#>

central <http://wwwdev.ebi.ac.uk/biomodels/model-

repository#>

prefix repo <https://github.com/msmith/MDLProject#>

entity(repo:88888, [prov:type='prov:Bundle',

ddmore:type=”ddmore:commit”,

vcs:repo="https://github.com/msmith/MDLProject",

vcs:type="git", vcs:commitId='888888', vcs:branch='master',

prov:label="Imported model", vcs:message="Imported model"])

activity(repo:123456, 2016-07-20T16:02:36Z, -,

[prov:type="ddmore:commit"])

wasGeneratedBy(repo:888888, repo:123456, -)

bundle repo:888888

mentionOf(remoteModel, central:edc456/modelA,

central:edc456)

entity(repo:modelB, [prov:type="ddmore:model",

prov:location="/models/modelB.ctl”])

http://www.ddmore.eu/
http://wwwdev.ebi.ac.uk/biomodels/model-repository
http://wwwdev.ebi.ac.uk/biomodels/model-repository

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 40 of 49

activity(copyIntoProject, -, -,

[prov:type=”ddmore:import”])

wasDerivedFrom(repo:modelB, remoteModel, copyIntoProject,

-, -, [prov:type='prov:PrimarySource'])

endBundle

endDocument

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 41 of 49

6 Querying the Workflow Store

6.1 Storing information in the Workflow store
The workflow store will handle provenance documents sent in the PROV-JSON
format.

6.2 Obtaining the model development tree
The purpose of this query is to get an overview of the model development tree

When this is returned, a client will be able to display a tree that represents how the
model(s) in a project have evolved during the lifetime of the project, from the base to
the final model.

The query will:

- Get all the entities of prov:type “ddmore:model”

- Get all the derivedFrom relationships between those models, where prov:type

= “ddmore:specialisation”

- Make sure that all Entities returned are the “latest” revision

The query should also return any Description Entities that have “Influence” over the
Models, so that the client can also display corresponding descriptive information.

6.3 Getting Entities
The purpose of this query is to find out information about entities in a project,
specifically:

- Following relationships between an Entity and other Entities, such as what

entity is derived from / influenced by / a revision of a given entity

- Getting entities of a specific type (e.g. Decisions or Assumptions)

The query will look for

- entity -> derived from -> ? (and/or)

- entity -> revision of -> ?

This query should also work in the opposite direction, as these relationships can be
bi-directional.

6.4 Getting Activities
The purpose of this query is to finding information about actions taken within a
project, specifically:

- What activity generated an entity

- What activity used an entity

- Get information about a specific activity

- Locate activities of a specific type, e.g. qc, estimate.

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 42 of 49

The request contains an activity id or an entity id, a repository, some relationships to
follow, and the number of transitive relationships to follow

If you provide an entity it looks for activities that are connected to it via the given
relationship(s)

If you provide an activity id it looks up that specific activity

Initially, the query will look for

- entity -> used -> ? (and/or)

- ? -> generated -> entity

And return those activities and entities

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 43 of 49

7 Solution Design

7.1 Provenance Concepts

7.1.1 Identifiers

Every entity, activity and agent within a workflow repository must have a unique
identifier.

This identifier must also be globally unique.

It is not important that this identifier is human readable; prov:label can be used to
provide some human readable text/description.

7.1.2 Entity IDs

In order to maximise interoperability across the different components in the system,
the entity identifiers should also be predictable, so it is possible to reverse engineer
identifiers if necessary from other information, and locate an entity from its identifier.

An identifier will be made up of the combination of:

- The URL of the repository, encoded in the namespace

- The ID of the “commit” created when the entity inserted into the version
control system

- The location of the entity from the root of the version control system

Examples of this are:

document

default <http://www.ddmore.eu/>

repo < http://git.mango.local/ddmore/analysis_project>

entity(repo:9d2e4cd9af541a56942aac15272d2a82f7062357/folder/

modelA.ctl, [prov:type="ddmore:model",

prov:location="/folder/modelA.ctl”]))

endDocument

document

default <http://www.ddmore.eu/>

repo <svn://demo2.mango-

solutions.com/opt/mango/modspace/svn/modspace>

entity(repo:538 /trunk/5557/Semiphysiological artemisinin
PK/Models/Executable_semiphysiological_artemisinin_pk.mod, [

prov:type="ddmore:model", prov:location="
/trunk/5557/Semiphysiological artemisinin

PK/Models/Executable_semiphysiological_artemisinin_pk.mod”]

))

endDocument

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 44 of 49

For the purposes of readability, this document does not use this format in examples.
Appendix A includes examples of “correct” documents.

7.1.3 Activity IDs

Activity IDs can be created by clients using their own local tools, as long as they are
Globally Unique. For instance, if the client is running Java, it could use

java.util.UUID class. If the client is running on the browser, it could use a function

that uses the Math.random utility.

The Activity ID must have the namespace of the project in which the action has taken
place.

7.1.4 Bundles

A bundle is a named set of provenance descriptions, and is itself an Entity, so
allowing provenance of provenance to be expressed.

We will use a bundle to encapsulate a set of provenance statements that occurred at
the same time, as a type of transaction.

There are three situations when a bundle will be used to collect together these
statements:

1. As a single “commit” to the version control system (containing file updates,
deletions, additions and movements)

2. On the completion of an activity

3. When the user updates an Entity description/QC status

7.2 Components

7.2.1 Version Control System

All entities that are tracked in the workflow datastore must be stored within a version
control system.

Version control systems typically have the concept of a “repository” that is used to
indicate where the entities are stored. In both SVN and Git this represented as a URI
that can be used to uniquely locate that repository within an organisation.

For example:

https://github.com/pharmml/lib-metadata

https://sourceforge.net/p/ddmore/thoughtflow-store-server/ci/master/tree/

As all entities should be stored in a repository, and a URL is used to uniquely identify
that repository, the “namespace” can be used to link an entity to a storage location.

A sample document would be:

https://github.com/pharmml/lib-metadata
https://sourceforge.net/p/ddmore/thoughtflow-store-server/ci/master/tree/

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 45 of 49

document

default <http://www.ddmore.eu/>

repo < http://git.mango.local/ddmore/analysis_project>

entity(repo:abc-123, [prov:type="ddmore:model",

prov:location="/folder/modelA.ctl”]))

endDocument

This document specifies that the entity with id “abc-123” is located in the folder/file
“/folder/modelA.ctl” within the repository
“http://git.mango.local/ddmore/analysis_project”

7.2.1.1 VCS Hooks

The Version Control System will have “hooks” applied to it so that when there is a
commit to it, then a message is broadcast indicating:

- The files added/updated/deleted in the commit

- Who made the change

- The commit message

This message is picked up by a VCS monitor and translated into a provenance
document that encodes:

- New entities within the repository

- Revisions to existing files

- Invalidation of deleted files

7.2.2 Provenance Infrastructure

The Provenance Infrastructure is comprised of a number of discrete micro services
with clear and narrow responsibilities for handling specific messages as they are
propagated throughout the system. The microservices are hosted in an Apache
Kafka messaging system, and managed via Apache Zookeeper.

The code for the Provenance Infrastructure is stored on Sourceforge at ()

There are:

7.2.2.1 Hook monitor

Codenamed Renoir.

Receives WebHook events, currently from Git repositories and publishes these
events onto the webhook-event topic.

7.2.2.2 Hook translator

Codenamed Gladys.

Translates WebHook VCS events into concrete VCS events and posts them onto the
vcs-event topic.

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 46 of 49

7.2.2.3 VCS Translator

Codenamed Potter.

Converts events into provenance documents through configured templates and posts
them onto the prov-payload topic.

7.2.2.4 PROV forwarder

Codenamed Prudence

Receives provenance documents and uploads them to a Thoughtflow server
capable of processing provenance documents.

7.2.2.5 Activity Monitor

Codenamed Zita

Spring Boot / Spring Integration application for receiving partial providence
information and storing it until it needs to be assembled into a full providence
document.

The application receives the notification on the provenance topic and processes the

notification. The default port for the web management interface is 10060.

This is used to track long running activities such as parameter estimations or
simulations. Zita intercepts the initial request a keeps a record of the Activity starting,
along with the initial inputs (the “used”s). When the job completes, the results are
collected and the Activity record is completed with the end time.

Finally, when the results are committed to the version control system, Zita detects
this and creates the appropriate “generated” messages, for forwarding to the
Thoughtflow Server.

7.2.2.6 Infrastructure Interactions

The following diagram shows how these components interact when a file is
committed to the version control system:

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 47 of 49

The following diagram shows the process of an Activity being started and monitored
by Zita. Note that this shows Prudence posting the Document onto ProvStore (The
University of Southampton’s publically available Provenance Store) but can be
configured to push information to the Thoughtflow Server instead.

7.2.3 Thoughtflow Repository

The University of Southampton’s ProvStore is implemented using a traditional
relational database. The DDMoRe Thoughtflow repository will be implemented using
a Graph database, so we can support the following sorts of inferences:

- When/Should an Entity is change, what are the complete downstream

impacts of this change? (i.e. every activity where this entity was used, and the

corresponding entities that were generated by that activity, right the way

through the tool chain)

- Follow back the complete chain that generated a particular entity (right the

way back to source data)

- What should be re-run to “restore” an Entity that is now out of date.

There are several property graph databases on the market such as Neo4J and
OrientDB, but we have chosen to use an RDF graph database to store our
provenance information as sequences of RDF triples. This is more in keeping with
the DDMoRe ontology knowledge base server, which also uses RDF to store
information that describes the models themselves (such as the therapeutic area and
type of model). In future it is envisaged that these schemas can be combined to ask
sophisticated questions such as “locate models that are a final model and have
therapeutic area “diabetes””

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 48 of 49

We will utilise the University of Southampton’s ProvToolbox
(https://github.com/lucmoreau/ProvToolbox) for processing Provenance Documents
and translating them between different formats (PROV-JSON, RDF)

The repository will be part of the Thoughtflow Server, which will be accessed via a
REST API for storing and retrieving Provenance Documents. The REST API will
support the queries described in section 6.

Documents that created provenance records are submitted in PROV-JSON format.

Queries are invoked as POST requests with a JSON payload.

See the JSON schemas in the Thoughtflow Server codebase hosted on Sourceforge
at (https://sourceforge.net/p/ddmore/thoughtflow-store-server/ci/master/tree/) for
formal definitions of the messages.

7.2.4 R package

The DDMoRe R package provides tools for reading in, manipulating and executing
models written in MDL. When a model is run, it is submitted to the Task Execution
Service which routes the request, via the framework, to the location where the model
will be run.

An additional R package will be developed that can be used from the MDL-IDE or
any other location that supports user driven actions that cannot be implicitly
generated by the provenance infrastructure, such as:

- Cloning a model

- Making an assumption

- Making a decision

The R package, in response to a function such as “clone(model)”, will:

- Create a copy the model

- Commit the copy to the version control system

- Send the message that the clone was derived from the source model to the

Thoughtflow server

The R package will also support running queries against the ThoughtFlow server to
read and visualise the ThoughtFlow graph, as the model development tree, and as
the task tree, which will include activities, and their inputs and outputs.

7.2.5 Task Execution Service

The Task Execution service acts as a middleman, routing requests to run a task,
through to the software application that will be responsible for executing the task.

When the Task Execution service receives a request, it captures:

- The start time of the activity

- The inputs to the request

- The software to be executed

- The agent (user) involved

https://github.com/lucmoreau/ProvToolbox
https://sourceforge.net/p/ddmore/thoughtflow-store-server/ci/master/tree/

Work Package:

Document name:

 Document version:

Filename: Capturing Pharmacometrics Workflow Concepts with PROV-O.docx

 Date: 31-Oct-2016

Page: 49 of 49

When the task completes, the outputs are captured, along with the end time. It then
generates an Activity message, with the entities involved, and forwards it to the
Thoughtflow server.

